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Lipid or surfactant bilayers which are bound by an external pressure and interact via an additional
short-ranged potential are studied theoretically. If the latter potential is not strong enough to
bind the lamellae by itself, it has asymptotically no effect on the (complete) unbinding transition,
which occurs in the limit of vanishing pressure; the separation and correlation lengths diverge as
power laws as a function of the pressure, with the amplitudes being determined by characteristic
amplitude ratios. If the potential strength exceeds the critical value, the bilayers are bound even for
zero external pressure (incomplete unbinding). Exactly at the critical potential strength, all length
scales again diverge as a function of the pressure. The critical exponents are found to be identical
to those for a less attractive potential, but the asymptotic amplitude ratios have different values;
also, the fluctuation amplitude, which measures the strength of the fluctuation-induced repulsion
between the bilayers, is reduced by a factor of 12 as compared to the subcritical case. These results
are obtained directly by Monte Carlo simulations of two fluid membranes and agree with exact
calculations for the analogous system of two strings in 141 dimensions. Experimentally, the effects
of short-ranged van der Waals attraction on the fluctuation amplitude ca should be observable for

suitable systems by small-angle x-ray scattering on lamellar phases.

PACS number(s): 82.70.—y, 64.60.—i, 87.22.Bt, 68.15.+e

I. INTRODUCTION

In many experimental situations, lipid or surfactant
systems form ordered stacks of bilayers, in which the
lamellae are on average parallel to each other and sep-
arated by layers of solvent. The layer spacing in this
lamellar phase can be determined either by the total vol-
ume fraction of solvent, in which case separations of up to
1 pm are obtainable [1,2], or by a balance of an externally
applied pressure and a variety of other direct forces which
act between the layers. The limit of zero pressure corre-
sponds to the case where the lamellae are swollen in ex-
cess water, i.e., the unconstrained case. Experimentally,
the pressure can be varied over many orders of magni-
tude using mechanical, osmotic, and vapor-pressure tech-
niques [3]. The direct forces comprise the omnipresent
van der Waals attraction, in the case of charged mem-
brane electrostatic interactions, and the so-called hydra-
tion forces, which are strongly repulsive and act at very
short distances [4]. In addition, membranes cannot cross,
which is accounted for by a hard-wall interaction at zero
separation. Thermally excited shape fluctuations turn
out to be of crucial importance in these systems and act
to renormalize the direct interactions [5], thus influencing
the mean separation between the membranes. Quite gen-
erally, shape fluctuations are severely restricted by the
presence of neighboring membranes, which leads to an
effective repulsion between the membranes, the so-called
Helfrich interaction [6].

In a heuristic way, the effect of thermal fluctuations
can be incorporated by adding the Helfrich term to the
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direct interactions and then proceeding in a mean-field
manner by simply minimizing the obtained expression.
Although this procedure fails in the case of critical un-
binding [7], it turns out to be accurate for complete un-
binding driven by external pressure [8]. Using simple
scaling ideas, the Helfrich interaction can be shown to
be of the form Vg = cqT?/KI%, where [ is the sepa-
ration between the membranes and K is the bending
rigidity [6]. The universal amplitude cq measures the
strength of the fluctuations and plays a crucial role in
the physics of membranes and membrane stacks. This
amplitude not only determines the mean membrane sep-
aration in the case where the spacing is allowed to equi-
librate under the action of an external pressure, but it
can also be measured directly using x-ray scattering tech-
niques [9,10]. The estimate due to Helfrich obtained for
the pure hard-wall case using a harmonic approximation,
ca = 372 /128 ~ 0.2313, agrees surprisingly well with the
above mentioned scattering experiments. Former Monte
Carlo estimates of this quantity yielded values smaller by
a factor of roughly 2 [11,12]. This discrepancy, which is
further substantiated by Monte Carlo results obtained in
this work, still has to be resolved.

In this article, the effect of an additional short-ranged
potential on the (complete) unbinding transition and
specifically on the amplitude cq is considered. The inter-
play of the short-ranged potential and the external pres-
sure (the latter can be thought of as a linear and thus
rather long-ranged potential acting between the mem-
branes) has a number of interesting consequences. As a
main result, the amplitude cg and the amplitudes of all
other length scales are identical to the pure hard-wall case
in the asymptotic limit of vanishing pressure, as long as
the potential is not attractive enough to bind the mem-
branes by itself; this defines the subcritical case. The
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amplitudes of the various diverging length scales are con-
nected by characteristic amplitude ratios. If the potential
strength exceeds the critical value, constituting the su-
percritical case, the membranes are bound even in the
absence of an external pressure and no unbinding tran-
sition takes place (incomplete unbinding). In between,
exactly at the critical potential strength, referred to as
the critical case, the fluctuation amplitude cg is reduced
by a factor of 12 and the characteristic amplitude ra-
tios have distinct values. Also, the lateral height-height
correlation function is found to be qualitatively different
for these cases; the large range of distances over which a
membrane is anticorrelated as it is found for the exactly
solvable harmonic case is reduced for the supercritical
case and actually disappears completely for the subcrit-
ical case. These results also apply to the case where the
layer spacing is determined by the solvent volume frac-
tion, for which the pressure variable used in the present
calculations functions as a Lagrange multiplier fixing the
conjugated separation variable [8].

The calculations are always restricted to one separa-
tion coordinate, i.e., to the case of just two membranes.
In fact, the results should also be valid for stacks of many
membranes, as suggested by recent work on the critical
unbinding of membrane stacks [13] and by explicit Monte
Carlo simulations of stacks of three and four membranes
bound by external pressure [14]. In the latter work it
was shown that a stack of membranes which are bound
by pressure only can asymptotically be described as an
assembly of decoupled membrane pairs. If the stack is
bound by short-ranged forces acting between the mem-
branes, the situation turns out to be more subtle; how-
ever, if the membranes are identical they still unbind si-
multaneously at a temperature that does not depend on
the number of membranes involved.

First, exact calculations for the case of strings in 1+1
dimensions are presented, corresponding to wetting in
two dimensions. Following a renormalization-group ar-
gument, strings in 1+1 dimensions, governed by line ten-
sion, and membranes in 2+1 dimensions, governed by
bending rigidity, should exhibit identical critical behav-
iors [15,16]. Indeed, the extensive Monte Carlo simula-
tions of two fluid membranes presented in Sec. III confirm
this expectation; even the amplitude ratios of different
length scales turn out to be identical. Section IV sum-
marizes the results and contains possible experimental
applications and implications.

II. EXACT RESULTS FOR STRINGS

Here the unbinding of strings in 141 dimensions is con-
sidered under the action of both external pressure and a
short-ranged potential. The calculation can be done ex-
actly using the Schrédinger-equation formalism. It turns
out that the results can be carried over directly to the
case of fluid membranes, as will be expounded in Sec.
II1.

To proceed, consider the effective Hamiltonian appro-
priate for the unbinding of strings

H = /dm{ (V1) +V(l)+Pl}, ()
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where the coordinate ! corresponds to the separation of
one string with line tension K/2 from a wall or to the
separation of two strings with line tension K each after
extraction of the center-of-mass coordinate. For simplic-
ity, the potential V(I) is taken to be of a square well
form

oo for l S
Vi)=L VO foro< 1< (2)
0 forl°< L

Attraction corresponds to V° < 0, repulsion to V° > 0.
The thermodynamic properties of this problem can be
obtained using transfer-matrix methods. For a finite
short-distance cutoff, one has to determine the eigenval-
ues and eigenfunctions of the transfer matrix from an
integral equation [16]. In the limit of zero cutoff, this in-
tegral equation reduces to the Schrédinger-type equation
[17] as given by

T? 9*
[ Taoz TP - En+VO} ®,(1)=0 for 1<
T2 9*
[__K gz tPI-E ]@n(l) =0 for 1>1° (3)

In order to simplify the notation, one introduces the
rescaled variables

y = (PK)Y312/3,

Yo = (PK)'/3T72/3°,

en = (PT)"23KY3E,, (4)
v = —(PT)"23K3v0,

Then the Schrodinger equations (3) can be written as

(92
[ 82+y ]‘I’n(y)=0 fOTy<y0,

32
[ By o sn] P,(y) =0 for y > yo. (5)

Within the transfer-matrix formalism, the unbinding of
the string is given by the unbinding of the ground-state
¥y, which undergoes a transition from a bound to a scat-
tering state. The general solution of (5), which has to be
normalizable, is given by

v, (y) = A Ai(y — e, —v) + B Bi(y — e, — v) (6)
for y < yo and

V.. (y)

for y > yo. The latter form ensures that ¥, (y) vanishes
as y — oo. The hard wall at y = 0 forces ¥,(0) = 0,
which together with (6) leads to

Ai(—e, —v)
Bi(—e, —v)’ (®)

= C Ai(y —en) (M

B=-A

The usual matching condition requires that ¥, (y) and
0%, (y)/dy are continuous at y = yo and takes the final
form
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_ Ai'(yo —€&n — ’U) - Bi’(yO —&n — ’U)ﬂﬂ

Bi(—e,—v)
Ai(yo — € — v) — Bi(yo — en — v) SH=22=Y
— Ai’(yO ~ €n) (9)
Ai(yo - En) ’

from which the energies €,, can be determined. The prime
denotes the derivative of the Airy function.

A. Zero potential

In the limit of vanishing potential, i.e., v = 0, Eq. (9)
reduces to Ai(—e,) = 0 [17-21]. Consequently, the
energy spectrum of the Schrédinger equation is deter-
mined by the zeros of the Airy function ¢y = 2.3381,
€1 = 4.0879, and so on. Within the transfer-matrix for-
malism, the free energy of the problem defined by (1) and
(2) is given by

f = Eo =eo(PT)¥3K /3, (10)

Using standard thermodynamic relations, the internal
energy U and the mean separation (l) can be calculated
from the free energy f,

- __mOf/T _1

Us(H)=-T"~— =31, (11)

af)T 2, 2(T*\?
O=1F - 21p=et(55) - @2

With the definition of the free energy f = U — T'S, the
entropic contribution to the free energy turns out to be

af 2
=T = __Ff. 13
TS T T 3 f (13)
For the elastic contribution one obtains

(Ha) =U - P(l) = —f/3, (14)

which means that the elastic free energy is maximized in
the unbound state. The total fluctuation-induced part of
the free energy, which is defined as the sum of the elastic
and entropic contributions, is given by

Va = (Ha) — TS = f/3. (15)

Using (12) this fluctuation potential can be written as a
function of the mean separation (I},

Va((1)) = f"(% (16)

with the fluctuation amplitude cq having the value
ca = (260/3)3/2 = 1.8936. (17)

The total free energy f can now be written as a func-
tion of the mean separation (l) and separates into the
fluctuation contribution Vg((l)) and the potential energy
(1),

() = POy + E% (18)

Minimization of this free-energy expression with respect
to the mean separation df((l))/9(l) leads back to (12);
the separation into the direct potential and the fluctua-
tion potential is therefore exact. This is a direct conse-
quence of the long-ranged character of the pressure in-
teraction. Indeed, such a superposition is expected to
be accurate for all potentials that decay for large sepa-
rations slower than the fluctuation potential itself [19].
It is to be noted that the fluctuation potential as given
by (16) depends on the mean separation and not on the
separation itself.

The parallel correlation length &, which measures the
decay of correlations parallel to the string, is given by

&) . (TK)UB - (19)

:El—‘Eoz —PT 81—60,

with €; — eg = 1.7498. For the ratio of separation and
parallel correlation length one obtains the characteristic
value

(Iy  2eover—co (T 1/2_2 (T 1/2 2
a7= 3 \x) “M(x - (20)

In order to determine the roughness or perpendicular
correlation length £, one first calculates

fooo yzAiz(y — €0)dy
Jo o Ai(y — e0)dy

from which the roughness follows to be

. g e\
L= V(%) = —603\/5<ﬁ) . (22)

The ratio of separation and roughness is thus given by

8
15’

(¥*) =

22
=€y

(21)

O _ . (23)
€1

B. Repulsive potential

One is interested in the asymptotic regime where the
pressure P goes to zero while the potential strength V°
is a positive constant; in this limit, the rescaled potential
strength v is negative and diverges, the rescaled potential
range Yo goes to zero, and the rescaled energies ¢, ap-
proach constant values. Thus the arguments of the Airy
functions on the left-hand side of (9) are positive diver-
gent. For x — oo, the Airy functions Ai(z) and Bi(z)
are given by [20]

Ai(z) ~ %W—1/2m—1/4e—2w3/2/3’
Bi(z) ~ rl/2g=1/422%2 /3, (24)

Expanding the separate terms of G around (—v —e,) up
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to second order in yo one obtains

1 Yo 1 u
g:———v+en:—(1—~), 25
Yo 2 ( ) Yo 2 (25)
where the
strength

pressure-independent rescaled potential

u=vys = —KV°(°/T)? (26)

has been used. For vanishing pressure, i.e., for yo — 0,
the expression (25) diverges. From (9) it follows that
Ai(yo — €,) = 0 holds in this limit, so one is led back
to the results for zero potential; in fact, a repulsive po-
tential is asymptotically irrelevant and the ground-state
energy is given by ¢ = 2.3381 for vanishing pressure. In
order to extract the leading correction to the asymptotic
behavior, one expands the inverse of the right-hand side
of (9) around yo — €¢ = 2.3381,

Al(yo bt 60)
Ai’(yo ~ €o)

and equates it with the inverse of (25), obtaining for the
ground-state energy to lowest order in yo and u

~ 2.3381 + Yo — €0, (27)

g0 ~ 2.3381 — you/2. (28)

For nonzero pressure, the ground-state energy increases,
as expected for a repulsive potential. For infinitely re-
pulsive potential V? = oo (this amounts to a shift of the
hard wall), the ground-state energy is given by

C. Attractive potential

In this case, v is a positive number, which diverges for
vanishing pressure. For £ — —oo, the Airy functions
Ai(z) and Bi(z) are given by [20]

Ai(z) ~ 72 (—2) V4 sin (%(-:::)3/2 + g)
Bi(z) ~ 7~ /2(—z)~ % cos (%(-@3/2 + %) . (30)

Using the derivatives of these expressions

Ai(i)(:v)= { (—l)itl(—x_)%Bi(m) for ¢ odd (31)

(=1)2(—z)zAi(z) for i even,
- _ (—1)':1 (—z)*Ai(z) for i odd
Bi® (@) = { (—1)2(—z)%Bi(z) for i even, (32)

the expansion of the left-hand side of (9) around (—&,—v)
becomes exactly summable and leads to

i {[~sB(en +0)]" (201}
G~ i=0

) in {[—yé(sn +0)]* /(20 + 1)!} '

1=0

(33)
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With the help of the identities
_ 5 (=2)
cosx = ig; @ (34)
siny/z = (—2)°
Ve T gt (%)
one finally obtains
G~ VEn + v _ Ai'(yo —&n) (36)
~ tan(yovEn +v)  Ai(yo —&n)’

which determines the energy spectrum &,. The behavior
depends on the potential strength v and can be conve-
niently classified using the parameter u = vy?; see (26).
In the limit of vanishing pressure, i.e., for yo — 0, the
expression G takes the values

+oo  for u < w?/4
g = 0 for u=mn2/4 (37)
—oo  for u>w?/4.

As expected, the potential strength u = m2/4 presents
a border line, since for this value the string undergoes
a critical unbinding transition in the absence of external
pressure [21,22]. The three cases defined by (37) will now
be separately discussed.

For u < w%/4, the subcritical case, it is immediately
evident from (36) and (37) that Ai(yo — €,) = 0 holds.
Consequently, the ground-state energy €o for yo — 0 is
again given by the first zero of the Airy function, i.e.,
o = 2.3381, as for zero potential; here it is important to
note that Ai’'(—eo) is indeed positive definite. To leading
order in yo one obtains

t
€0 =~ 2.3381 — 5o ( ail/%/a - 1) , (38)

where the linear term becomes infinitely large for uv —
m2/4. This dependence of £y on yo is a subdominant
correction and the asymptotic thermodynamic behavior
does correspond to the case of zero potential.

For u = w2 /4, the critical case, it follows from (36) and
(37) that the energy spectrum is determined by Ai’(yo —
€n) = 0. The energy levels are given by the zeros of the
first derivative of the Airy function, i.e., £ = 1.018 79
and £; = 3.248 19. In analogy to the calculation in Sec.
II A, the free energy is given by

f = Eo=é(PT)?*K~1/3 (39)

and the expressions (11)—(16) hold similarly. This means
that the simple superposition ansatz (18) still holds in
the asymptotic limit of vanishing pressure, which is a
rather unexpected result. Specifically, the separation is
given by

2\ 1/3
=1 =p=ay (gp) - @O

For the ratio of the separations for the subcritical and
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the critical case one obtains

ﬁff(ulfﬁ%ﬁ - Z_‘; = 2.2950, (41)

a value that is also found for membranes using Monte
Carlo simulations (see Sec. IIT). The fluctuation potential
is given by the general form (16), but the fluctuation
amplitude now has the value

ca = (260/3)3/2 = 0.1567, (42)

which is 12 times smaller than that for the subcritical
case, Eq. (17). The fluctuations are therefore drasti-
cally reduced by the presence of a critical short-ranged
potential. For yo — 0, the expectation value (y2) can be
calculated in analogy to Sec. II A, yielding

Jo” v A% (y — &o)dy
f0°° A (y — éo)dy

(¥?) = = 0.749 878. (43)

For the roughness one obtains

72\ /3
€1 = /(12 — ()2 = 0.537 189 (k‘P) . (49)

The ratio of the separation to the roughness is given by

B _ 1 2643, (45)
€L

This ratio is substantially smaller than that for the sub-
critical case, the string is rougher. For the parallel cor-
relation length £ one obtains

K\ Y3
& = (Tﬁ“) z o (46)

1~ €o

with £, — £y = 2.2294. The ratio of the separation to the
parallel correlation length is given by

Ry - 1/2 1/2
$<11/>2 A V?_E" (%) =1.0141 (%) . (47)

For u > w2 /4, the supercritical case, the ground-state
energy is given by €9 = —oo for vanishing pressure, i.e.,
Yo — 0, as follows from (36). However, the expression
eoy2 = K f(I1°/T)?%, which is proportional to the free en-
ergy, approaches a negative but finite constant as yo — 0.
This corresponds to an incomplete unbinding transition,
for which the string remains bound by the short-ranged
potential even for zero pressure. In this limit and as u
approaches u. = w2/4, the string unbinds via a critical
unbinding transition with the separation asymptotically
given by

Iy =1°u —us) "N (48)

For P = 0 and as u — wu., the various length scales are

connected by the simple expression

E==1 (%) €172, (49)

III. MEMBRANES

The appropriate effective Hamiltonian for the unbind-
ing of fluid membranes reads

H= / d*x { (v2)? +V(l)+Pl}, (50)

where the coordinate ! corresponds again to the separa-
tion of one membrane with bending rigidity K/2 from
a flat substrate or to the separation between two mem-
branes with bending rigidity K each. The potential V (1)
is again given by (2).

For the Monte Carlo studies, the x coordinate is dis-
cretized on a square lattice with sites {z; ;} and lattice
constant Az; the membrane configuration is then speci-
fied by the discrete set l; ; = I(x; ;). Using dimensionless
variables 2;; = l; jo/K/T/Az, p = PAz3/+/KT, and
the rescaled potential U(z) with depth U° = V°Az?/T
and range 2° = [°\/K/T /Az, the Hamiltonian takes the
form

H/T = Z dzw

® 4+ U(2i5) + pij, (51)

where V2 denotes the discretized version of the Lapla-
cian.

In the simulations, a square lattice consisting of 3920
discrete sites is partitioned into five sublattices; each
sublattice is updated independently using a fully vector-
ized code employing the standard Metropolis algorithm
[23,13]. In most runs, averages are calculated from ~ 107
Monte Carlo steps per site, which typically gives a sta-
tistical error of less than 1%. The rescaled potential
range was always set to 2° = 0.0262. Among the cal-
culated averages are the mean separation (z), the rough-
2)(1:/ 2 _

ness or perpendicular correlation length £, = (z

V/{2?) — ()2, and the parallel correlation length ¢,
which was estimated using £ = Az exp[2n((VI)?)/T]
[23].

In analogy to the exact calculation for strings, the free
energy can be separated into a fluctuation part and a
part due to the direct interaction; for zero potential it
has the form

FONT = S + enges
F((z) = Awzl’((l))/T =p((2)) + % : (52)
After minimization dF((1))/d(l) = 0 = 8F((2))/8(z),

one obtains

<l>=(2§§§2)1/3, (=) = (7“)1/3- (53)
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The fluctuation amplitude cg can thus be determined
from the mean separation. In Fig. 1 the mean separa-
tion (z) is plotted as a function of reduced pressure p for
four different values of the reduced potential strength
U°. From the top, the values are given by U° = 0,
U° = U%/2, U° = U?, and U° = 1.1U°. The ver-
tical bars inside the data points denote the numerical
error. For the critical potential strength the estimate
U2 = 2.78 + 0.01 is used [13]. For the case U° = 1.1U?
one obtains a bound state even for vanishing pressure,
which approaches the separation found for zero pressure
(z) = 0.562+0.005, denoted by a straight horizontal line,
rather rapidly. This scenario corresponds to an incom-
plete unbinding of the membrane. For the two subcriti-
cal potential strengths U® = 0 and U°® = U?/2, the data
converge quickly for small pressure and scale accurately
like ~ p~1/3, as denoted by the straight line. As for the
case of strings, a subcritical potential is asymptotically
irrelevant. From the amplitude of the separation and fol-
lowing (53), one obtains the estimate for the fluctuation
amplitude cqg = 0.116 £ 0.002 [14], which is very close to
3n%/256 and thus exactly half the so far accepted esti-
mate [6]. For the critical case, the separation scales with
the same exponent, but the amplitude is greatly reduced
as compared to the subcritical case. The two parallel
straight lines in Fig. 1 are drawn exactly with the am-
plitude ratio as calculated for strings (41) and match the
two sets of data quite accurately. For the critical case, the
data seem to deviate from the straight line for very small
pressures, which simply reflects the fact that the value
used as an estimate for U?, which is determined from an
independent Monte Carlo simulation for the critical un-
binding of two membranes [13], is actually smaller than
the true critical value.

In Fig. 2 the ratio of the separations for zero potential
and critical potential (z(U° = 0))/{z(U° = U?)), is plot-
ted. The prediction of the string calculation Eq. (41)
is denoted by a broken line. For intermediate pressures,
the agreement is good. For smaller pressures there are

<z>

0.5}

104 1073 10-2p 10! 100

FIG. 1. Monte Carlo results for the separation between
two membranes for four different values of the rescaled po-
tential strength, from bottom to top: U° = 1.1U2, U° = U?,
U® = U?/2, and U° = 0, where U? has been determined
independently. Data for the supercritical case U° = 1.1U°
approach a finite separation of (z) = 0.562 4 0.005 for vanish-
ing pressure p, as denoted by the horizontal straight line. The
other data scale asymptotically like ~ p~1/3, as indicated by
straight lines.

3
<> [ 4)
<z(U)> $

1 L 1
10* 103 10-2p 10! 10°

FIG. 2. Ratio of mean separations for zero potential and
critical potential strength; the exact result for the correspond-
ing system of strings (2(U° = 0)) / (z(U° = U?)) = 2.295
is denoted by a broken line. For intermediate values of the
pressure p, the Monte Carlo data agree with the string result;
for very small values of the pressure, the data progressively
deviate from the straight line, indicating that the estimate
used for U? is actually smaller than the true critical potential
strength.

deviations, again due to the uncertainty in the critical
potential depth, and the ratio crosses over to unity, as
expected for the subcritical case Eq. (49).

Figure 3 shows the ratios of separation and rough-
ness (z)/ (zz)i/ % for three different potential strengths
U° = 1.102, U° = U?, and U° = U?/2 (from the bot-
tom). The data are compared with the results of the
string calculations, giving (2)/(22)s/? = 1, 1.2643, and
V5, respectively, as given by Eqgs. (49), (45), and (23);
the agreement is rather good.

At this point it is appropriate to comment on the ob-
served similarity between membranes and strings. In the
limit of vanishing rescaling factor, the functional renor-
malization of the direct interactions leads to identical
fixed-point structures for strings and membranes as de-
scribed by the Hamiltonians (1) and (50) [15]. This is the
case even for coupled systems of many strings or mem-
branes [16]. As a consequence, phase diagrams are iden-

<z>

<Z2> 10/2

0
10* 103 10-2p 10! 10

FIG. 3.
¢t = (zz).lz/2 for three different values of the potential
strength, from bottom to top: U° = 1.1U2, U® = U?, and
U® = U?/2. The results for strings for the three different
cases (z)/€1 = 1, (2)/€1L = 1.2643, and (2)/€L = /5 are
denoted by broken lines.

Ratio of mean separation (z) and roughness
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tical and critical exponents are related in a simple way,
as indeed observed for the critical unbinding of stacks of
membranes and strings [13]. The results presented above
show that the same is actually true for amplitude ratios
between different length scales; these ratios depend in a
very categorical manner on the potential that confines the
membrane (which will be discussed below), but do not
seem to depend on whether one considers membranes or
strings. Based on these notions, one is led to formulate
the general relation between the different length scales
considered here

L= =¢ (K) (2)

The roughness exponent ¢ is given by ¢ = 1/2 for strings
and ¢ = 1 for membranes. The values for the constants
C. and C are listed in Table I and do depend on the
potential which confines the membrane or string. In con-
trast, the scale factor Cy should be independent of the po-
tential and can be determined exactly using a harmonic
analysis.

To this end, consider the Hamiltonian (50
branes with P = 0 and V(I
function C(x) = ([I(x) —

(54)

) for mem-
) = mli2?/2. The correlation

(D1[1(0) — (D)) is given by

oo d2q eiq-x
Cx)= T/_ 2m)2 Kqi/2 + m

2T oo dZ qu
/oo (2m)? q + 4,
where the correlation length is defined by §; =

(2K/m)'/%. The integral can be evaluated exactly and
leads to

(85)

C(z) = — Téj kei(V2z/€)) (56)
2K I

Using the asymptotic expansion for large arguments of

the Thomson function kei(v/2z/£)) [24], one obtains the

expression valid for large values of z

C(z) ~ e~/8isin(z /& +7/8).  (57)

K o\/\anz 2\/ 2wx

The exponential factor justifies the definition of the cor-
relation length. Using kei(0) = —m/4, one obtains a re-

TABLE I. Amplitude ratios of the mean separation (I),
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lation between the roughness and the parallel correlation
length

T 5”

C(0) = 7R

&= (58)

Similarly for strings, using the Hamiltonian (1) with
P =0 and V(I) = ml?/2, one arrives at

C(a:):T/_Z

with the parallel correlation length defined by §; =
K /2m)'/2, The integral leads to
g

dq etax 2T elax

2r Kq2/2+m K

o0 27 g2 +£”_2’
(59)

C(z) = %ﬁne—m/s“, (60)
which gives, for the relation between roughness and par-
allel correlation length,
T
i7alk (61)
Comparing (58) and (61), the scale factor appearing in
(54) is determined to be
Co = 8. (62)
In order to determine the amplitude ratio C) for mem-
branes from the Monte Carlo simulation, the full cor-
relation function has also been calculated. In Fig. 4
the normalized correlation function C(z)/C(0) is plot-
ted for (a) U° = 0 and p = 0.01, (b) U° = U? and
p = 0.01, and (c) U® = 1.05U2 and p = 0. The correla-
tion function for U® = 0 [Fig. 4(a)] resembles the resul-
tant function for the harmonic potential (56) in that it
oscillates and shows a wide range of distances for which
the membrane is actually anticorrelated. The correlation
function for U® = 1.05U2 [Fig. 4(c)] is rather close to a
purely exponential decay [25]. The function in Fig. 4(b)
is intermediate between the two other curves. In order
to extract the parallel correlation length, the estimate
& = =/In[C(0)/C(z)] with C(z)/C(0) chosen close to
e~3/2 is being used. The data points used for calculating
§)| are drawn as black circles. This estimate is exact both
for purely exponential decay and for a decay governed by
(56); it is suggested that it gives reliable values for ¢

the roughness £,, and the parallel

correlation length ¢ for the three cases distinguished by the strength U° of the short-ranged

potential and for a harmonic potential.

cu= (/6 c=(5)"" w/(&1/co) cu/cy ¢ (MC)
U <U? NG 5.8319 2.6081 ~ 4.5
Ut =07? 1.2643 2.8683 2.2691 ~ 2.3
U >u? 1 V2 V2 ~ 1.6
harmonic V8

potential
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FIG. 4. Normalized correlation function C(x)/C(0) for three different potential strengths (a) U° = 0, (b) U° = U?, and
U° = 1.05U2. The distance z is measured in units of the lattice constant Az. One notices that the region of distances
over which the membrane is anticorrelated becomes smaller for the critical potential strength and vanishes altogether for the

supercritical case U° = 1.05U2.

also for the data shown in Fig. 4. The resultant values
for C|| are given in the last column of Table I. The devia-
tions from the exact values for strings are in the limits of
uncertainty of the method used for estimating the par-
allel correlation length. It is therefore plausible that the
different values of C| found for the different potential sce-
narios in the string calculation also apply to the case of
membranes.

IV. SUMMARY AND DISCUSSION

The complete (i.e., pressure-induced) unbinding of
membranes has been investigated, where in addition to
the external pressure a short-ranged potential is present.
In the calculations, this potential was taken to be of a
square-well form, but the results should actually apply
to all potentials which contain a hard wall and fall off
faster than the fluctuation-induced interaction Vg ~ 1/12
[19]. This is the case for the van der Waals attraction
as well as for screened electrostatic interactions and the
so-called hydration repulsion. The asymptotic behavior,
which means the behavior in the limit of vanishing pres-
sure, is divided into three cases: (i) the subcritical case
for potentials which are not attractive enough to bind
the membranes for zero pressure, including repulsive in-
teractions; (ii) the critical case, where the short-ranged
potential has exactly the critical strength; and (iii) the
supercritical case, for which the membranes are bound
by the potential and where scaling relations hold in the
limit where the potential strength approaches the crit-
ical value (critical unbinding). For all three scenarios,
the relevant length scales are connected by characteris-
tic amplitude ratios, as given by (54) and Table I. The
amplitude of the fluctuation-induced Helfrich interaction,
which together with the direct interaction determines the
unbinding behavior for the complete unbinding cases (i)
and (ii), is found to be 12 times smaller for the critical
case as compared to the subcritical case.

Experimentally, the fluctuation amplitude cg has been
determined for stacks of surfactant bilayers using small-
angle x-ray scattering. In these experiments, the separa-
tion between the bilayers is fixed by the amount of solvent
added; the pressure P, which appears in the present cal-
culations, connects to the layer spacing via the expression

(53). For these systems, the Bragg peaks are replaced by
power law singularities |g — @m|™ 2 centered around
gm = 27m/d and characterized by exponents
Nm = Tm2[d*K 8% f(d)/8d*)*/? /2, (63)
where d = [+ is the repeat distance of the layers, J is the
layer thickness, and f(d) is the total interaction between
the layers (including fluctuation-induced contributions)
as a function of the repeat distance d [8]. Using the free-
energy expression (52) the exponent 7,, is given by

_.ln_z_ 1_§ 2— ©m?2 1_§2 (64)
= e\ d) T i)

Taking the Helfrich estimate cg = 3w2/128 [6], one ob-
tains 7°° = 4/3, which is in quantitative agreement with
experimental results; for large spacings, only the first
Bragg singularity remains [9]. However, the results pre-
sented here and in [14] show, however, that cq is in fact
given by cq ~ 372/256. Without discussing the reason
for the apparent agreement between the experimental re-
sults and the erroneous value for cq accepted so far, it is
clear that a reduced value of cq in the case of a critical
short-ranged potential would have drastic consequences
on the scattering pattern: From the above calculated re-
duction of cg by a factor of 12 (and accepting the ex-
perimentally measured value ™ = 4/3), one obtains
n™ = 44/12/3 ~ 4.6 for the critical case, from which
it follows that there are no Bragg singularities present at
all for large distances between the layers.

For which experimental systems could such a critical
potential be observed? For surfactant systems, the van
der Waals attraction is not strong enough to bind the
layers and these systems can be swollen beyond any lim-
its; this is mostly due to the small bending rigidity of the
surfactant layers, leading to a strong fluctuation-induced
repulsion. Here one is in the subcritical regime; however,
for small spacings even for these systems the results pre-
sented in this article could be observed experimentally,
as will be discussed below. Lamellar systems consisting
of lipid bilayers, however, typically show a finite layer
spacing even in the absence of external pressure; here
fluctuations are weaker due to a much larger bending
rigidity. The van der Waals attraction for these systems
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belongs to the supercritical regime. However, changing
the composition of the system, it is fairly easy to ap-
proach the critical potential strength. This can be done
either by adding a cosurfactant to the bilayers, thereby
reducing the bending rigidity [27], or by changing the
solvent composition, which influences both the strength
of the van der Waals attraction and the bending rigidity
of the bilayer [28,29]. In fact, by one of these methods
one should actually be able to tune the system to the
critical case, for which the reduction of the fluctuation
amplitude should be easily measurable.

But even for subcritical potentials, interesting behav-
ior for finite spacings is expected; experimentally, one
never reaches the asymptotic limit and corrections to the
asymptotic scaling become important. Combining (38),
(4), (12), and (17), it follows that cg ~ [1 — c(u)l®/(1)]®
for (1)/1° > c(u), where c(u) diverges as the potential
strength approaches the critical value. As follows from
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(63) by an asymptotic analysis for large repeat distance
d, the exponent 7, then attains a maximum value for fi-
nite d and reaches the value given by (64) only for larger
separations; for a certain range of (subcritical) potential
strengths, it follows that actually no Bragg singularities
are present for an intermediate range of separations, with
the first Bragg singularity reappearing at larger separa-
tions [30].
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